
AutoBuilder Page 1 Copyright © 2023
 Reachable Games, LLC

AUTO BUILDER
User Documentation v1.12

6/7/2023

AutoBuilder Page 2 Copyright © 2023
 Reachable Games, LLC

CONTENTS

Welcome ...3

First Steps (boring, but recommended) ...4

Initial Configuration ..5

Using AutoBuilder ..6

Editor: Local Workflow ..7

Editor: Using Hand-Copied Bundles ..8

Editor: Using Hosted Bundles ..9

Building Asset Bundles to Publish ...9

Building Self-Contained Apps ...11

Asset Bundle Organization ..12

Build Configuration ...13

Product Name ...15

Build Version Configuration ...16

Expanded Version Handling ..16

Feature Details ..18

Troubleshooting ..19

Support ..20

About us ..21

Change History ...22

AutoBuilder Page 3 Copyright © 2023
 Reachable Games, LLC

WELCOME

Thanks for checking out AutoBuilder! Although there are several different assets on the Asset Store that
have similar or overlapping features, nothing out there is as comprehensive or offers a complete
workflow solution for asset bundles as AutoBuilder. We’re proud to offer this package at such a
reasonable price, given the number and nature of problems it solves.

Due to time constraints and the effort of maintaining the many incremental changes that Unity goes
through, we no longer support non-LTS releases. There are just too many random bugs in all the little
versions of Unity between LTS releases that it wastes too much time to keep them all running in the same
codebase. I hope you understand and enjoy our products with Unity’s most stable releases.

If you like the asset, please do take a moment to write a positive review or give it a rating. Be
sure to recommend it to your friends. Building assets for the Unity developer community takes a lot of
time and effort, so be sure to support the ones that make your life easier. Otherwise we won’t be able
to keep doing it for you.

The URL to leave a review is right here:

https://assetstore.unity.com/packages/slug/148660

AutoBuilder Page 4 Copyright © 2023
 Reachable Games, LLC

FIRST STEPS (BORING, BUT RECOMMENDED)

This document is the best place to learn about the features and uses about this asset. Please read it
thoroughly, as we want to make sure you get the most out of your investment.

1. Create a brand new project. This may seem unnecessary, and while we go through great
lengths to make sure there are no collisions with other assets, it is impossible to provide a
guarantee for every combination of settings. Overall, this will give you the best possible
experience to first figure out how to use the asset without introducing other variables.

2. Install AutoBuilder from the Asset Store.

3. Go to the testScenes folder and open the scene called ABAutoLoader

a. Select ABLoader from the hierarchy view
b. If you are using Unity 2020.x.x, the Bootstrap URL should look like this:

https://cdn.reachablegames.com/autobuilderdata/2020/config_{PLATFORM}.json

Note: Asset bundles created by one version of Unity is not typically compatible with other
versions. Also, while the Editor attempts to load bundles meant for other platforms, they don’t
always work (for example, loading bundles built for Android in the Unity Editor on Windows). My
experience is, you really do want the editor version and platform to match what you’re loading.

4. Select Tools→ReachableGames→AutoBuilder→Reveal Build Configs. This finds the

ABBuildConfig asset. Select the ABEditorConfig a couple of lines down from it.

a. Set the Build Version to 0.1.13
b. Set the platform name to win32 or win64 or osx depending on your operating system.

Node: If you are using a version of Unity I don’t host test bundles for, or are using Linux, or
anything else goes wrong, just run Tools→ReachableGames→AutoBuilder→Build [Current] for
Editor, and clear the Bootstrap URL. This lets your editor run locally with a set of bundles you just
made and put in your local cache, as if they had been downloaded.

AutoBuilder Page 5 Copyright © 2023
 Reachable Games, LLC

5. Press Play. You should see the loading scene pop up a progress bar and it moves smoothly
across the screen with the text status changing to indicate what files are being downloaded. A
more detailed list of URLs will be written to the Console window, so you can troubleshoot.

6. Once all the files are downloaded, a UI text string says: “Loading From Bundles Starts Now”.
Three different prefabs are instantiated from the asset bundles that were just retrieved. When all
of the cubes are created, a final UI text string says “Completion Callbacks Done”. This happens
very quickly, and it may appear simultaneous to you… if something is not working, the above is
the order it happens in.

7. Ta-da! You just ran a project in the Editor that goes through the full asset bundle retrieval, cache
management, and object instantiation process, without needing anything more to start with
than the C# script assemblies and the ABEditorConfig asset to specify the platform and version
to retrieve.

Forewarning: These test asset bundles are hosted on my CDN at my expense. As the asset evolves, the
version numbers and test scene may change over time, so be sure to keep AutoBuilder updated if you
plan to try the test scene. This minimal project also works well as an introduction to how to build and
host your own set of these asset bundles, as the source assets are provided. You can simply build them
and host on your own website or CDN to verify your functionality. Make sure you bump your version
number forward to make certain you’re not loading a previously cached version from someplace else,
of course.

At this point, take a moment to read through the description of the workflows provided by AutoBuilder in
more detail. Although it is relatively straightforward, there may be details you miss just winging it. The
remaining sections will help you gain a deeper understanding of the asset and give instructions on how
to use it effectively.

INITIAL CONFIGURATION

Here are the core steps you need to get asset bundle builds working easily and for multiple platforms.
AutoBuilder is a version-control-friendly system where the configuration of all builds can be checked in
and used by anyone, at any time, to generate the next build. The only file that will change because of
a build is the version asset, and only if it’s set to automatic increment.

1. Create a root bundles folder and organize subfolders into what will become each asset bundle.

2. Configure the platforms for which you plan to build bundles and players in the ABBuildConfig
asset, and set the root bundles folder appropriately.

3. Configure the ABBuildVersion asset the way you plan to use it.

4. Open the ABAutoLoader scene and set the name of the scene you want to load after all the
asset bundles are cached and mounted.

See ABNextScene for an example of how to instantiate objects directly from asset bundles by name.
The testSpawnSomePrefabs.cs file has a proper async code sample, but I believe there are many

AutoBuilder Page 6 Copyright © 2023
 Reachable Games, LLC

ways to use assets in bundles. The hard part is creating bundles in the first place, which AutoBuilder
does for you.

USING AUTOBUILDER

There are multiple modes for using AutoBuilder. They are essentially configured the same way, but there
are additional steps and considerations depending on which mode you want to use. Understanding
the differences between use cases will help avoid frustration when assets don’t appear to change
when the source assets definitely have changed. Asset bundles are basically a caching mechanism, so
knowing how the cache works (at a high level) is important to be able to debug the caching process.

The absolutely best feature of AutoBuilder is the ability to work in the Editor with asset bundles enabled.
This is great, because it means you get truly asynchronous asset loading performance, the ability to
profile and performance tune games without having to build a full client and connect to it, and you get
to test the same code paths that real built clients will run, rather than a fallback strategy of synchronous
loading that works slowly and differently (as is the case with most asset bundle systems).

Why doesn’t everyone do this? Normally it means you must build asset bundles every time you change
an asset that is in a bundle. That clearly sucks. AutoBuilder, on the other hand, has a rapid Update and
Play function that you can trigger with a hotkey. This quickly builds a single override asset bundle that
contains every new asset that is modified based on the current set of asset bundles in use. This takes far
less time than building all the bundles again, and before you know it, you’re in the game and testing
with the new set of assets at full speed.

What’s amazing about the Update and Play feature is you can use built bundles, perhaps from a build
server, or pull down the most recently published set from a CDN or copy them from the guy sitting next
to you. So long as the version of the manifest in the Editor Bundles folder matches the expected version
in ABEditorConfig, the Update and Play function will generate the override bundle you need to run with
all the appropriate assets.

Be aware that if you change a texture that normally lives in an asset bundle and just hit Play (like you
are probably used to), it will not show up modified. The version in the asset bundle will be loaded
instead. It sounds obvious, but when changed assets are “missing” from the game, it’s typically
because the asset bundles are out of date. Get in the habit of using the shortcut—it’ll help
tremendously (Shift-Ctrl-U on Windows, Shift-Cmd-U for Mac). If no bundled assets are changing, just
running with Play is perfectly fine, of course.

If many assets have changed since the last full build of asset bundles, it might start taking a while to
build the override bundle. Simply rebuild the full asset bundles again and you’re back to a rapid
iteration time. It’s up to you to know the right frequency for this on your project.

AutoBuilder Page 7 Copyright © 2023
 Reachable Games, LLC

EDITOR: LOCAL WORKFLOW

To run completely offline, the process is very simple.

1. Remove any cached data with Tools→ReachableGames→AutoBuilder→Clear Cached Bundles
for Editor.

2. Go to Tools→ReachableGames→AutoBuilder→Reveal
Build Configs. Click on ABEditorConfig in the Project
window.

Set the Platform to whatever yours is (see the Tooltip).
The Version string doesn’t really matter if you’re working
locally, but good practice is to set it to the latest version that was published. Leave Self
Contained off. There’s a different section to describe that below.

3. Edit ABBuildConfig. Make sure your Source Bundle Folder is
set properly. Expand the list of Platforms and make sure your
platform is enabled. It probably is.

4. Build your bundles with
Tools→ReachableGames→AutoBuilder→Build [Current] for Editor. (These are created directly
into your local cache folder, at Tools→ReachableGames→AutoBuilder→Bundles for Editor)

5. Open the ABAutoLoader scene. Edit the ABLoader object in the scene. To work completely
offline, clear the Bootstrap URL.

6. Anytime your assets change, launch with Tools→ReachableGames→AutoBuilder→Update and
Play. You’ll need to use this constantly, so there’s a keyboard shortcut made for you already.

7. After your assets have changed a lot, the override bundle will start taking longer. Repeat step 4
and it should be fast again. If you’re not changing anything that lives in asset bundles, you can
just hit Play like normal, of course, but when changes don’t seem to apply properly, it’s probably
because your bundles didn’t get rebuilt.

AutoBuilder Page 8 Copyright © 2023
 Reachable Games, LLC

EDITOR: USING HAND-COPIED BUNDLES

To populate your Editor cache with asset bundles that are built by someone else, the process is simple.

1. Run Tools→ReachableGames→AutoBuilder→Clear Cached Bundles for Editor on your machine.

2. Open the Tools→ReachableGames→AutoBuilder→Bundles for Editor folder on your friend’s
computer.

3. Copy your friend’s bundles into your
folder.

4. Edit ABEditorConfig
a. Set Platform to whatever the

platform the bundles were
built for. See the tooltip for
valid choices.

b. Notice the manifest-
X.Y.Z.json filename. Your
Version string must be
exactly whatever is the X.Y.Z
part.

5. Open the ABAutoLoader scene. Edit the ABLoader object in the scene. To work completely
offline, clear the Bootstrap URL.

6. Press Play. You’re now using your friend’s bundles.

7. If you hit Update and Play, the editor builds an override bundle with any changes you’ve got
that are different from what is stored in those bundles. Once that is generated, it starts playing
and your changes should be visible as well.

AutoBuilder Page 9 Copyright © 2023
 Reachable Games, LLC

EDITOR: USING HOSTED BUNDLES

If you have the option to have a build server generate and automatically publish bundles, this is the
easiest option to work with. Of course, publish doesn’t necessarily mean public. You should be able to
host them internally on a network share drive and use file:// URLs to get at them, or even run a simple
web server on your build machine. The rule is, if you can get to the files in a browser, the game can too.

1. Edit ABEditorConfig
a. Set Platform to whatever the platform the bundles were built for. The string must match a

platform string given in the tooltip. Note, the editor can typically load assets from any
target (with some limitations), which is convenient for testing across platforms.

b. Set the Version string to the X.Y.Z that is in the manifest-X.Y.Z.json filename.

2. Open the ABAutoLoader scene. Edit the ABLoader object in the scene.
a. To work with hosted bundles, enter the URL to where the config files are hosted. As a

convenience, {PLATFORM} is automatically substituted for the current platform, allowing
the same URL configuration to work for all platforms. Example:
https://cdn.reachablegames.com/autobuilderdata/config_{PLATFORM}.json

3. Hit Play once to pull down the files locally at least once.

4. Always launch with Update and Play. This will create an override bundle with only your changes
in it before starting the game.

BUILDING ASSET BUNDLES TO PUBLISH

The build step for making the all the players and asset bundles for publishing builds is very simple.

1. There are two ways to start a multi-platform build.

a. Simply click on
Tools→ReachableGames→AutoBuilder→Build [All Enabled Platforms] to Publish

b. Run builds on the command-line via script with the following command:

You can launch one or multiple builds from the command line like so:
unity.exe -quit -batchmode -projectPath d:\project\path\ -executeMethod
 ReachableGames.AutoBuilder.ABAutoBuilder.BuildFromCommandLine -target=win32 -target=osx

You can launch ALL enabled build platforms like so:
unity.exe -quit -batchmode -projectPath d:\project\path\ -executeMethod
 ReachableGames.AutoBuilder.ABAutoBuilder.BuildFromCommandLine

2. If in the Editor, click Open Folder: Bundles to Publish. This will take you to the Build folder, which is
parallel to your project’s Assets folder. These are the files generated by AutoBuilder that need to

AutoBuilder Page 10 Copyright © 2023
 Reachable Games, LLC

be put online.

3. There will be several “Bootstrap” config_{PLATFORM}.json files. If you look at their contents, they
simply exist to point to where the bundles_{PLATFORM} folders can be found. When the game
starts up, it only knows how to find the config_win32.json file, for example, then it follows the link
stored inside that file to grab the manifest, which lists all the relevant bundles for that version.

4.
Most of the time, you will want to upload both the bundles* and config* files to a web site. It is
relatively easy to configure CloudFront as a CDN in front of your web site so you can just keep
uploading the files to your web site and they will automatically be propagated to a fast network
without any effort. Just make sure your Bootstrap URL in your Unity scene points to the config file
on your web site directly, and configure the URL in the ABBuildConfig to point to the CDN.

5.

AutoBuilder Page 11 Copyright © 2023
 Reachable Games, LLC

BUILDING SELF-CONTAINED APPS

A new feature as of v1.6 is Self-Contained builds. Many people have asked for a way to ship the asset
bundles along with the game, so that no network access is required. Some platforms might require
special permission to access the internet that is off-putting for users. Some developers need to ship a
product that doesn’t need any kind of network access. Some folks just want to use asset bundles as a
way to organize their project without worrying about hosting. Whatever the reason, this feature is for
you.

All you have to do is check the Self Contained box on the
platform you want to build fully self-contained. That’s it.
When you create a build for that platform, the bundles will
be built before the executable. They are then moved into
the /StreamingAssets/ folder during the executable build
process. As soon as the build is complete, they are deleted
back out of /StreamingAssets/ so they don’t accumulate
forever with each new build.

This has been tested successfully on Android, and while I
can’t guarantee a totally bug-free experience on every
platform, Android is by far the hardest to get right. And it
works.

On the off-chance you want to debug this specific code
path in the Editor, you are welcome to manually copy the
config_{PLATFORM}.json file into /StreamingAssets/, and create /StreamingAssets/bundles/ and copy all
the contents of your platform bundles in there. Every platform uses the same folder name for simplicity.
Then turn on the Self Contained flag in the ABEditorConfig. You lose the ability to Update and Play, but
to run the debugger on a built set of bundles as closely as possible to the real runtime, this is the way.

AutoBuilder Page 12 Copyright © 2023
 Reachable Games, LLC

ASSET BUNDLE ORGANIZATION

 It is worth knowing that bundles can be dependent on assets in other bundles.
AutoBuilder figures that out automatically for you and prioritizes the load order
accordingly. If it can’t resolve the ordering, it will error out and tell you the assets
that are causing problems. Unity gives many suggestions on ways that asset
bundles might be used. My experience is that assets with similar modification
frequency make good bundle-fellows. It’s probably good to have more bundles
that are smaller, than to have a few bundles that are larger.

The bundle build process is usually too slow if everything is thrown in a single large
bundle, because anything that changes requires rebuilding the whole bundle.
That requires your users to throw away their massive download and download the new bundle. On the
contrary, lots of small bundles that change infrequently is ideal, because most bundles will not need to
be rebuilt most of the time. So, make a separate folder for each character or set of characters, for
each group of similar props, for each set of related sound effects, etc. The wonderful part about
AutoBuilder is, you can always just move the files into different folders and the structure of your asset
bundles is instantly updated the next time you build without any further effort on your part. You can
change your mind anytime.

Yes, whole scenes may be made into asset bundles just by moving the scene and its dependencies into
a bundle folder. It’s possible to load individual assets by name, as is shown in the
testSpawnSomePrefabs.cs script, but it is not recommended. Unity works best when dependencies are
tracked by the system, so rather than loading assets manually by name, make scenes are you normally
would and just request those scenes to load as normal. Scenes will load just fine once their asset
bundles are mounted, all their dependencies included.

A limitation of AssetBundles seems to be Scenes cannot be fully contained within an asset bundle with
its dependencies. From what I’ve observed, a Scene will load fine if all its assets are in another bundle,
but if you simply move them all into the same bundle, it fails to load. This is a Unity issue, not an
AutoBuilder issue.

AutoBuilder Page 13 Copyright © 2023
 Reachable Games, LLC

BUILD CONFIGURATION

Reveal Build Configs will quickly select the
ABBuildConfig asset for you. This contains the
full set of options for each platform that are
normally only available in C# for Player and
Asset Bundle builds. But with AutoBuilder, all
you do is open the tab for each platform and check some boxes!

 Source Bundle Folder
Use this to specify where the root of your asset bundles folders is. It already assumes /Assets/, so
just the rest of the path is necessary.

 Bootstrap
This is a structure that currently only holds a CDN Bundle URL, but you could add anything you
like, in case there are additional fields that helps your project during startup. The Bootstrap
config is loaded as the very first thing pulled down from the internet on startup, which is
convenient for other data fields, such as URLs for analytics or logging or payments processing,
etc. The best reason to put this in a config file is you probably want to have different URLs for
things based on whether you’re in local development, in a test environment, or a release
environment. Baking this into the executable is bad practice, because you would have to re-
release a build just to change some web addresses. Instead, move startup configuration details
to the config file. Then, when you switch a build from test to release, you just upload a different
bootstrap config file.

Upon opening a platform’s settings, you are presented with a number of checkboxes that are
separated into Asset Bundles Options and Player Build Options categories.

AutoBuilder Page 14 Copyright © 2023
 Reachable Games, LLC

The Enabled checkbox controls
whether AutoBuilder will try to build
the platform. This serves two
purposes. One, there is no way to
detect a platform is not installed, so
you have to remove the platforms
that could not build anyway. Two,
you might not want to build a
platform (yet), but might want to
retain the configuration for that
platform. Disabling it is a quick and
easy way to solve both problems.

The defaults are generally good to
use the way they are set. Different
versions of Unity expose different
sets of flags, and AutoBuilder
exposes them regardless of what
version you are using, and just
ignores them if they do not apply.
Consult the documentation. I do
try to ensure that flags that would
cause a build to fail (because they
are always illegal for that platform,
for instance) are automatically
disabled, so you don’t waste time
figuring that stuff out. You’re

welcome. সহ

The remaining options are
documented on Unity’s site. Here is
the link to the Asset Bundle Options:
https://docs.unity3d.com/ScriptReference/BuildAssetBundleOptions.html

Here is the link to the Player Build Options:
https://docs.unity3d.com/ScriptReference/BuildOptions.html

N.B. The Development flag must be on for any of the other settings in the Player Debugging block to
work. It’s meaningless to turn on Connect to Profiler, for instance, in a non-Development build, so you
can simply turn that one off and it turns all the others off as well during the build process. So, remember
to disable Development for release builds.

AutoBuilder Page 15 Copyright © 2023
 Reachable Games, LLC

PRODUCT NAME

As of version 1.11, AutoBuilder allows you to have multiple different products in the same Unity project!
This is optional, of course, but if you set the Product Name field, AutoBuilder will set the
Application.productName during the build, then replace what was there afterwards, so it’s non-
destructive. This allows you to have multiple different product outputs, even when targeting the same
platforms.

That’s not a terribly useful feature unto itself unless you can also
specify exactly what scenes are part of a product. So there’s a
ScriptableObject called ABOverrideSceneList included now
that you can duplicate and drag in scenes that should belong
in a specific product. Once you have a set of scenes that
belong in a product, drag this list to the Override Scene List for
that config and when AutoBuilder makes a build for that
product, those are the only scenes that get compiled into the
player. That’s super handy if all your scenes are in asset
bundles already, and all you’re doing is launching a simple loading scene, or when making an
expansion to an existing game where certain scenes should be included with one version but not the
other, etc. Use your imagination. Just remember that if you specify the Override Scene List, AutoBuilder
will ignore the list of scenes in the File→Build Settings menu.

AutoBuilder Page 16 Copyright © 2023
 Reachable Games, LLC

BUILD VERSION CONFIGURATION

Reveal Build Configs will take you to the folder
that contains this asset. The ABBuildVersion is a
very simple asset that holds Major, Minor, and
Build numbers. Major and Minor values are
always updated by you, as that should relate
to public releases of your product, as is typical with semantic versioning schemes. There are four settings
for how you want the Build number to change:

 Manual
When set to Manual, the Build number will only increase if someone changes it explicitly. This is
good for script-driven builds or human-driven builds when you aren’t producing versions often.

 AutoIncrement
When set to AutoIncrement, the Build number increases every time a Publish build is started,
even if it fails to produce an executable. This is because a single version may be used for
multiple platform targets, and tracking separate (but functionally equivalent) version numbers
per platform is a production nightmare. This setting is easiest to manage for build servers that
have the ability to check-in the ABBuildVersion asset to revision control after it builds. This is also
easy to handle for human-driven builds, and prevents mistakes where accidental modification
of existing versions of asset bundles could be catastrophic to your end-user (with a caching
CDN, it can create confusion what is being downloaded, so you might not immediately notice).

 TimeInTicks
When set to TimeInTicks, the Build number is always the time in UTC ticks, which almost
guarantees unique version numbers for every build, even across a build farm. It also avoids the
need to check in the ABBuildVersion asset, since the Build value is generated every time
anyway.

 EnvironmentVar
When set to EnvironmentVar, the version string is taken directly from the environment variable set
when Unity is launched. This is useful mainly when doing command-line builds and there is an
external process figuring out the build numbers for you. If you plan to use this interactively and
you use the Unity Hub to start Unity, it’s actually the environment that Unity Hub starts with which
Unity will receive (at least on Windows). This can be confusing.

If you don’t like these options, you can always change the ABBuildVersion class to do what you want.
Its only job is to convert itself to a string, which is then embedded in the manifest-X.Y.Z.json filename,
and again is embedded in the ABBuild asset that gets constructed at build time and embedded in the
platform executable, so it knows what version of asset bundles it should load to run correctly. As long as
the version is a string of some sort that makes for a valid filename, it should be fine.

Feel free to suggest alternatives, as well. These are just the options we thought would be useful.

EXPANDED VERSION HANDLING

In addition to have a semantic version number, AutoBuilder sets the executable version string properly
so that Application.version matches the bundle version that it was built for, in case you want to display it
in a log or on screen somewhere. Very helpful for tracking down problems.

AutoBuilder Page 17 Copyright © 2023
 Reachable Games, LLC

Finally, the version is written into a version.txt file adjacent to the config_{PLATFORM}.json files. This allows
for more seamless build automation in the event the version number of a build needs to be stamped
into a folder or filename or used in some other way.

For example, when you right-click on any .EXE and go to Properties->Details, you can see the version
and copyright information that was presend during the compilation process. For all Unity builds, this
information always says Unity and the version of Unity that you are using, not your current build version.

I prefer my final product to have my company details and the proper version number of my game, so I
use a really useful program called verpatch to modify the properties of .EXE files after they are created.
I found this handy utility at https://www.codeproject.com/Articles/37133/Simple-Version-Resource-Tool-
for-Windows although I do not guarantee anything about it. It’s not my software.

N.B. As is typical in Windows batch programming, if you want to put this line into a .bat file, you need to
double all the percent characters (%%). The following command can be used to read the version
number from version.txt and write it into the details of your built .EXE file.

for /F "tokens=*" %v in (version.txt) do (
 verpatch YourGame.exe %v.0 /pv %v.0 /s product "Your Game" /s company "Your
Company LLC" /s (c) "Copyright 2021")

AutoBuilder Page 18 Copyright © 2023
 Reachable Games, LLC

FEATURE DETAILS

DESIGN DECISIONS

 Folders-As-Bundles
The whole asset bundle management system (if you can call it that) that Unity has provided is
confusing, overly flexible, difficult to visualize, and ultimately hard to manage. Coupled with the
fact that it really does take custom coding to make it work well, it’s an advanced feature that is
out of reach for a lot of smaller teams. By cutting the complexity and offering simple
organizational structure and good automated caching, it just works. Each folder becomes an
asset bundle, and bundles can depend on other bundles for loading shared assets, giving you
the flexibility of just dragging files around to change the organization.

 Handling Multiple Versions of Same Platform Simultaneously
Yes, AutoBuilder is designed to allow multiple versions of each platform to be hosted in the same
folder at once. This is extremely helpful if you don’t want to or can’t invalidate older builds due
to certain platform limitations. It is also useful for giving early birds a chance to see the newest
build without impacting the rest of the users. Of course, this also means you can publish every
version and test with the same infrastructure that you use for releases, and just skip versions that
are buggy and release only the ones that pass QA.

 Build Once, Multiple Environments
It is described more thoroughly in the Bootstrap section above, but it was a concerted effort to
allow for a build process that can promote a single build from an internal development
environment all the way to public release, just by changing a web hosted config file. Check out
the Bootstrap config for details, as it is the first piece of data the ABAutoLoader scene fetches,
never caches, and is a great place to hook environment settings that differ based on the
release status of the project.

 Filtering Assets by Filename Pattern
Some tools generate additional data files that are only needed during the editing process.
Unfortunately, not all tools allow us to specify where those files will live, and leave dropping
everywhere. Consequently, there are times when filtering out certain files can be critical for
reducing asset bundle size. You can set up as many filters are you like, but be aware that they
are general filters, not per-folder. This is why exhaustive logging was added, to help determine
why files are being filtered out unexpectedly. All slashes are forward, and all paths are
lowercase. Some examples:

o You can use Ignore Ends With to strip assets that end with “.png”
o You can use Ignore Contains to strip assets that have “_remove” somewhere in them.
o You can use Ignore Exact to strip an asset like “assets/bundles/folder/filename.png”

FEATURES AUTOBUILDER DOES NOT (AND WILL NOT) HAVE

 Same-Executable, Updated Asset Bundles
This is possible, with a slight change to the code, but not recommended. The way you would do
it is set the cache time on the manifest-X.Y.Z.json file to be short, like 24 hours, and simply publish
over it. The new clients will connect and pull whatever version is hosted and grab the
appropriate bundles. However, existing clients cache the manifest, so they will not look at the
new hosted file. You would need to change the loader to not cache the manifest. This kind of
workflow is poor because there is no easy way to guarantee the state of the executable will be

AutoBuilder Page 19 Copyright © 2023
 Reachable Games, LLC

compatible with data in a set of asset bundles built at a different time. If any scripts change,
they are always baked into the executable, but GUIDs which are references to scripts are baked
into the assets in bundles. If they don’t match, things break. It’s safer to publish a new build.

 Fish
Because they are too slimy.

TROUBLESHOOTING

1. Error: Cannot mark assets and scenes in one AssetBundle.

This error pops up whenever Scenes are in the same asset bundles with other kinds of assets. It’s
not clear why this happens, because it doesn’t always pop up, but it’s an error coming from
within Unity’s asset bundle code. If it happens to you, there isn’t a lot you can do to fix it except
move scene files to a separate bundle.

A good organization that has been suggested is to keep all your scenes in one asset bundle,
and keep your assets separate from them. Besides being convenient, the dependencies always
work out properly, and it is frequently the case in Unity that scene files change rapidly and assets
less rapidly, which makes for better iteration time with Update and Play.

2. Materials aren’t showing up right, duplicate objects appear tiny in the distance,
shaders show up black, etc, in the editor.

It seems that Unity’s Editor sometimes has a hard time figuring out what shaders to build when
using asset bundles, especially when the bundle platform is different from the platform you are
using. If you are having problems with it, check that the bundles you are loading were made for
your platform, and that they were made with the same version of Unity—although the Editor tries
very hard to use all platform data, shaders are not really compatible across all hardware. If all
else fails, try bumping your ABBuildVersion and ABEditorConfig to a unique version number and
rebuilding the asset bundles locally, to reduce the control some of these variables. These are
visual anomalies in the Editor and are not present on actual built products on real platforms. Test
them on-device before pulling your hair out trying to solve them in the Editor. Rest assured, this is
not a bug in AutoBuilder, but problems with the Editor itself.

3. The Cyclical Dependency Error window keeps popping up.

Sorry, you need to move some files around. Either move one or more files into existing bundles
where they don’t cause cycles in the dependency graph, or create a new bundle and move
logically related things into it until there are no more cycles in the dependency graph. The good
news is, the text of the warning window tells you exactly which assets are causing problems, and
the bundles in which they currently reside.

AutoBuilder Page 20 Copyright © 2023
 Reachable Games, LLC

SUPPORT

Please read all the documentation. We put a lot of effort into it and hope that it exceeds your
expectations. In the event you have further questions, please check the following web pages for more
details about this asset:

Our Website: https://reachablegames.com/unity-assets/

Unity Forum: https://forum.unity.com/threads/696635/

If you find that none of the above can answer your question, you may contact us at
support@reachablegames.com, but know that we always handle support requests first that include:

1. Invoice Number
2. Unity Version
3. Asset Version
4. Links to screenshots or small sample projects on DropBox or similar sharing site describing the

problem.
5. Console logs are often helpful.
6. Kindness. If you are mean, rude, harassing, or hateful, do not expect a response.

As a matter of common sense, we do not offer support to free customers except as time permits.

Finally, if you are looking for a feature that is not currently supported, understand that we are a business
and get many such requests. If you need a custom feature that is important enough to your product to
pay for its development, contact us about it.

AutoBuilder Page 21 Copyright © 2023
 Reachable Games, LLC

ABOUT US

Reachable Games is located in the beautiful hill country of Austin, Texas USA. It was founded by Jason
Hughes, who has been a professional game developer since 1995, at Origin Systems. He has worked on
many AAA games and with many recognizable companies. As a generalist, Hughes has worked on
nearly every kind of game platform in every capacity—from graphics tools to AI to UI/UX to game
design to shader writing to database management to networking and server development. It turns out
this is the right skillset to help improve the Unity development experience for other developers.

We currently have several other assets on the Asset Store. For what it’s worth, they are all built because
we are working on projects of our own and both need and use them on a daily basis. If you think this
one is great, chances are the others will help you out too.

AutoBuilder Page 22 Copyright © 2023
 Reachable Games, LLC

CHANGE HISTORY

V1.12 – JUNE 7, 2023

 Fixed BuildTargets to match what is current in 2022 LTS and going forward with 2023 (from what
the API docs say). When Unity changes the names of things, it causes errors in the code,
unfortunately.

V1.11 – JANUARY 22, 2023

 Added feature to allow multiple products from the same Unity project, including setting
ProductName and separate list of Scenes.

 Added a huge amount of logging and better reporting for client builds, and removed call stack
printing during that process, so the output is more useful. There is a lot of data there and is
generally hard to get to. Take a look at the output, and feel free to tweak the logs to your liking.

V1.10 – MAY 1, 2022

 Only supporting 2020LTS and 2021LTS going forward. Removed some old version dependent
code.

 Added support for ShaderLiveLink flag.

V1.9 – OCTOBER 24, 2021

 Dropped support for Unity 2017.
 Added version.txt file output during build.
 Added setting PlayerSettings.bundleVersion during player builds, which is the value that you get

when calling Application.version at runtime.
 Added a WaitForManagedDebugger flag, which requires Development and AllowDebugging to

be enabled. This is oddly tucked away on the Build Settings… dialog, which makes it difficult to
use with AutoBuilder. Now it’s easy, and lets you connect a debugger before the first line of
code is run.

V1.8 – JANUARY 1, 2021

 Revised the error handling for UnityWebRequest now that the interface changed in 2020.2.

V1.7 – OCTOBER 1, 2020

 Minor bug fix in code to avoid C# errors in Unity 2020.x.

V1.6 – SEPTEMBER 30, 2020

 Major new feature: Fully Self-Contained builds is a new checkbox that embeds bundles in the
build

 Overhaul of the console logging to help people diagnose where URLs are going wrong.
 Slight refactor of default build folders, test scenes, and hosted bundles. It’s a little clearer this

way, I think.
 Verified operation in Unity 2020.1.6 and started hosting test bundles for this version.
 Refactored the display in the inspector for the ABBuildConfig.

AutoBuilder Page 23 Copyright © 2023
 Reachable Games, LLC

 Added support for intelligently correcting flags per-platform where they would cause problems
or Unity would trigger build failures if set incorrectly.

 Removed the WebHook hackery in favor of popping up a browser tab when updates are
released.

V1.5 – JUNE 2, 2020

 Added a product namespace around all the files in AutoBuilder.
 Converted all Assert statements to if/Debug.LogError, since the user experience was poor.
 Fixed an issue with Unity 2019.3 that was causing exceptions deep in C++ that crashed the

Editor. Unity’s bug, not mine.
 Added feature that allows you to relocate AutoBuilder into any folder without needing to

change the code. It just finds itself properly now.
 Created separate links to different test bundles on my CDN. This solves an annoying issue for the

test scene and users who have different Unity versions all trying to load bundles from 2017.4LTS.

V1.4 – APRIL 4, 2020

 Fixed error that pops up when an invalid asset (missing script, etc) is added to a bundle, causing
builds to fail. Now it adds, but cannot be instantiated. An error will be logged in this case.

 Fixed problem where an edit to an asset would not be picked up by the Override Bundle unless
you did Save Project. It works now, by calling Save Project for you.

 Added filename filtering functionality.
 Improved Inspector appearance, added tooltips, etc.
 Added new build options for 2018 and 2019 at the appropriate versions. All options are visible,

but have no effect in versions of the editor where it cannot apply them. Consult Unity
documentation for details when options are considered valid.

V1.3 – NOV 6, 2019

 Added a cyclical dependency detection system and warning popup dialog, which tells you
exactly what assets are connected to other assets in bundles. There’s no way we can fix this for
you, but with the proper information at hand, the solution is quick—just move one or more files to
another bundle, or create a new bundle to break the cycle.

 Added some detail to the documentation, improved screenshots.
 Tracked down some of the shader weirdness in-Editor as being a Unity shader handling bug.
 Pushed a new version of the asset bundles with the Scene in it, to demonstrate that flow.

V1.2 – AUG 29, 2019

 Updated the code to work in Unity 2017.4 and newer, which required a few changes.
 Improved legibility of the colored error messages.

V1.1 – JULY 8, 2019

 Fixed a bug with UnityEditor.SceneAsset not being handled correctly when generating the
dynamic type (because it doesn’t exist at runtime, truly). This caused some errors while reading
the manifest when a scene was the only thing in a bundle.

V1.0 – JULY 4, 2019

AutoBuilder Page 24 Copyright © 2023
 Reachable Games, LLC

 First release.

